Add like
Add dislike
Add to saved papers

Characterization of kidneys in patients with systemic sclerosis by multi-parametric magnetic resonance quantitative imaging.

PURPOSE: To determine the usefulness of multiparametric magnetic resonance (MR) quantitative imaging in characterizing the kidneys in systemic sclerosis (SSc) patients.

MATERIAL AND METHODS: Forty-six SSc patients (47.9 ± 12.8 years, 40 females) and 22 age- and sex- matched healthy volunteers (46.1 ± 13.8 years, 20 females) were recruited and underwent renal MR imaging by acquiring blood oxygen level dependent and saturated multi-delay renal arterial spin labeling (SAMURAI) sequences. The T2* value, T1 value, renal blood flow (RBF), arterial bolus arrival time (aBAT), and tissue bolus arrival time (tBAT) of renal cortex were measured and compared among diffuse cutaneous SSc (dcSSc) and limited cutaneous SSc (lcSSc) groups and healthy controls using One-way ANOVA and logistic regression analysis.

RESULTS: Compared to healthy volunteers, SSc patients with normal estimated glomerular filtration rate (n = 40) had significantly lower T2* value (P = 0.026) in the left renal cortex, longer T1 value (right: P = 0.015; left: P = 0.023), lower RBF (right: P < 0.001; left: P < 0.001), and shorter tBAT (right: P < 0.001; left: P = 0.005) in both right and left renal cortex after adjusting for demographics. The dcSSc patients (n = 23) had significantly lower RBF in both right (226.7 ± 65.2 mL/100 g/min vs. 278.2 ± 73.5 mL/100 g/min, P = 0.022) and left (194.5 ± 71.5 mL/100 g/min vs. 252.7 ± 84.4 mL/100 g/min, P = 0.020) renal cortex compared to the lcSSc patients (n = 23) after adjusting for demographics, but the significance of the difference was attenuated after further adjusting for modified Rodnan skin score and digital ulcers.

CONCLUSION: Multi-parametric MR quantitative imaging, particularly multi-delay ASL perfusion imaging, is a useful technique for characterizing the kidneys and classification of SSc patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app