Add like
Add dislike
Add to saved papers

CRISPR/Cas9 Genome Editing Allows Generation of the Mouse Lung in a Rat.

RATIONALE: Recent efforts in bioengineering and embryonic stem cell (ESC) technology allowed the generation of ESC-derived mouse lung tissues in transgenic mice missing critical morphogenetic genes. While epithelial cell lineages were efficiently generated from ESC, other cell types were mosaic. A complete contribution of donor ESC to lung tissue has never been achieved. The mouse lung has never been generated in a rat.

OBJECTIVE: To generate the mouse lung in a rat.

METHODS: CRISPR/Cas9 genome editing was used to disrupt the Nkx2-1 gene in rat 1-cell zygotes. Interspecies mouse-rat chimeras were produced by injection of wild-type mouse ESC into Nkx2-1 -deficient rat embryos with lung agenesis. The contribution of mouse ESC to the lung tissue was examined by immunostaining, flow cytometry and single-cell RNA sequencing.

MEASUREMENTS AND MAIN RESULTS: Peripheral pulmonary and thyroid tissues were absent in rat embryos after CRISPR/Cas9-mediated disruption of the Nkx2-1 gene. Complementation of rat Nkx2-1-/- blastocysts with mouse ESC restored pulmonary and thyroid structures in mouse-rat chimeras leading to a near 99% contribution of ESC to all respiratory cell lineages. Epithelial, endothelial, hematopoietic, and stromal cells in ESC-derived lungs were highly differentiated and exhibited lineage-specific gene signatures similar to respiratory cells from the normal mouse lung. Analysis of receptor-ligand interactions revealed normal signaling networks between mouse ESC-derived respiratory cells differentiated in a rat.

CONCLUSIONS: A combination of CRISPR/Cas9 genome editing and blastocyst complementation was used to produce mouse lungs in rats, making an important step toward future generations of human lungs using large animals as "bioreactors".

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app