Add like
Add dislike
Add to saved papers

A Secure and Interpretable AI for Smart Healthcare System: A Case Study on Epilepsy Diagnosis Using EEG Signals.

The efficient patient-independent and interpretable framework for electroencephalogram (EEG) epileptic seizure detection (ESD) has informative challenges due to the complex pattern of EEG nature. Automated detection of ES is crucial, and Explainable Artificial Intelligence (XAI) is urgently needed to justify algorithmic predictions in clinical settings. Therefore, this study implements an XAI-based computer-aided ES detection system (XAI-CAESDs), comprising three major modules including of feature engineering module, a seizure detection module, and an explainable decision-making process module in a smart healthcare system. To ensure the privacy and security of biomedical EEG data, the blockchain is employed. Initially, the Butterworth filter eliminates various artifacts, and the Dual-Tree Complex Wavelet Transform (DTCWT) decomposes EEG signals, extracting real and imaginary eigenvalue features using frequency domain (FD), time domain (TD), and Fractal Dimension (FD) of linear and non-linear features. The best features are selected by using Correlation Coefficients (CC) and Distance Correlation (DC). The selected features are fed into the Stacking Ensemble Classifiers (SEC) for EEG ES detection. Further, the Shapley Additive Explanations (SHAP) method of XAI is implemented to facilitate the interpretation of predictions made by the proposed approach, enabling medical experts to make accurate and understandable decisions. The proposed ensemble-based stacking classifiers in XAI-CAESDs have demonstrated 2% best average accuracy, Recall, specificity, and F1-score using the University of California, Irvine, Bonn University, and Boston Children's Hospital-MIT EEG data sets. The proposed framework enhances decision-making and the diagnosis process using biomedical EEG signals and ensures data security in smart healthcare systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app