Add like
Add dislike
Add to saved papers

Hypoxia in the pulmonary vein increases pulmonary vascular resistance independently of oxygen in the pulmonary artery.

INTRODUCTION: Hypoxic pulmonary vasoconstriction (HPV) can be a challenging clinical problem. It is not fully elucidated where in the circulation the regulation of resistance takes place. It is often referred to as if it is in the arteries, but we hypothesized that it is in the venous side of the pulmonary circulation.

METHODS: In an open thorax model, pigs were treated with a veno-venous extra corporeal membrane oxygenator to either oxygenate or deoxygenate blood passing through the pulmonary vessels. At the same time the lungs were ventilated with extreme variations of inspired air from 5% to 100% oxygen, making it possible to make combinations of high and low oxygen content through the pulmonary circulation. A flow probe was inserted around the main pulmonary artery and catheters in the pulmonary artery and in the left atrium were used for pressure monitoring and blood tests. Under different combinations of oxygenation, pulmonary vascular resistance (PVR) was calculated.

RESULTS: With unchanged level of oxygen in the pulmonary artery and reduced inspired oxygen fraction lowering oxygen tension from 29 to 6.7 kPa in the pulmonary vein, PVR was doubled. With more extreme hypoxia PVR suddenly decreased. Combinations with low oxygenation in the pulmonary artery did not systematic influence PVR if there was enough oxygen in the inspired air and in the pulmonary veins.

DISCUSSION: The impact of hypoxia occurs from the alveolar level and forward with the blood flow. The experiments indicated that the regulation of PVR is mediated from the venous side.

Full text links

We have located open access text paper links.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app