Add like
Add dislike
Add to saved papers

PACAP sequence modifications modulate the peptide antimicrobial activity against bacterial pathogens affecting aquaculture.

The global aquaculture industry has significant losses each year due to disease outbreaks. Antibiotics are one of the common methods to treat fish infections, but prolonged use can lead to the emergence of resistant strains. Aeromonas spp. Infections are a common and problematic disease in fish, and members of this genera can produce antibiotic resistant strains. Antimicrobial peptides (AMPs) have emerged as an alternative method to treat and prevent infections and pituitary adenylate cyclase activating polypeptide (PACAP) is a prominent member of this family. The objective of this research was to study PACAP's direct antimicrobial activity and its toxicity in fish cells. Four synthetic variants of the natural PACAP from Clarias gariepinus were tested in addition to the natural variant. The experimental results show a different antimicrobial activity against A. salmonicida and A. hydrophila of each PACAP variant, and for the first time show dependence on the culture broth used. Furthermore, the results suggest that the underlying mechanism of PACAP antimicrobial activity includes a bacterial membrane permeabilizing effect, classifying PACAP as a membrane disruptive AMP. This study also demonstrated that the five PACAP variants evaluated showed low toxicity in vitro, at concentrations relevant for in vivo applications. Therefore, PACAP could be a promising alternative to antibiotics in the aquaculture sector.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app