Add like
Add dislike
Add to saved papers

Efficiency of single pharmaceutical surfactants to mimic intestinal biorelevant media solubilization and dissolution of etravirine: Comparison of intrinsic and film dissolution models.

We understand that quality control dissolution media may best anticipate in vivo product performance by mimicking in vivo media, but preferably involve at most a single pharmaceutical surfactant for routine laboratory use. The objective here was to estimate the concentrations of six pharmaceutical surfactants to mimic etravirine solubility and intrinsic dissolution rate, as well as dissolution rate from a film model, in each Fed State Simulated Intestinal Fluid Version 2 (FeSSIF-V2) and Fasted State Simulated Intestinal Fluid Version 2 (FaSSIF-V2). Solubility studies and colloid sizing measurements were conducted. Results indicate that all six surfactants were more efficient than FeSSIF-V2 or FaSSIF-V2 at solubilizing drug, and also exhibited higher micelle diffusivities than FeSSIF-V2 and FaSSIF-V2 mixed-micelles. The rank-order potency (on mM basis) of the six pharmaceutical surfactants to mimic etravirine solubility in each FeSSIF-V2 and FaSSIF-V2 was: polysorbate 80 (PS80) > polysorbate 20 (PS20) > polyoxyethylene(23) lauryl ether (POE23) > POE10 > hexadecyltrimethylammonium bromide (HEX) > sodium lauryl sulfate (SLS). This rank-order potency was almost the same to mimic drug dissolution rate into each FeSSIF-V2 and FaSSIF-V2, except POE10 > POE23. For the most potent surfactant, PS80, 0.461 mM and 0.140 mM PS80 was estimated to mimic etravirine's solubility and dissolution rate into FeSSIF-V2, respectively, using the intrinsic dissolution model. The low PS80 concentration to mimic dissolution rate reflects the relatively high diffusivity of PS80 micelles, compared to FeSSIF-V2 mixed-micelle diffusivity, which was the case for all six pharmaceutical surfactants. Results are also presented in terms of a film dissolution model for surfactant-mediated dissolution, where dissolution enhancement was less than that in the intrinsic dissolution model, and the film model required lower surfactant concentration than in intrinsic dissolution model to mimic FeSSIF-V2-enhanced dissolution. Findings have promised to identify single pharmaceutical surfactant concentrations that mimic key performance attributes of biorelevant media.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app