Add like
Add dislike
Add to saved papers

Task interference as a neuronal basis for the cost of cognitive flexibility.

bioRxiv 2024 March 7
Humans and animals have an impressive ability to juggle multiple tasks in a constantly changing environment. This flexibility, however, leads to decreased performance under uncertain task conditions. Here, we combined monkey electrophysiology, human psychophysics, and artificial neural network modeling to investigate the neuronal mechanisms of this performance cost. We developed a behavioural paradigm to measure and influence participants' decision-making and perception in two distinct perceptual tasks. Our data revealed that both humans and monkeys, unlike an artificial neural network trained for the same tasks, make less accurate perceptual decisions when the task is uncertain. We generated a mechanistic hypothesis by comparing this neural network trained to produce correct choices with another network trained to replicate the participants' choices. We hypothesized, and confirmed with further behavioural, physiological, and causal experiments, that the cost of task flexibility comes from what we term task interference. Under uncertain conditions, interference between different tasks causes errors because it results in a stronger representation of irrelevant task features and entangled neuronal representations of different features. Our results suggest a tantalizing, general hypothesis: that cognitive capacity limitations, both in health and disease, stem from interference between neural representations of different stimuli, tasks, or memories.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app