Add like
Add dislike
Add to saved papers

BSA Adsorption on Titanium Dioxide Nanoparticle Surfaces for Controlling Their Cellular Uptake in Skin Cells.

Nanoparticles (NPs) are continuously being developed for many applications including imaging, biomedicine, and everyday products. It is difficult to avoid contact with NPs such as titanium dioxide (TiO2 ) NPs, which are widely used in sunscreens. However, the safety of TiO2 NPs for skin contact and inhalation remains controversial. If NPs cannot penetrate the skin, they will be unable to circulate in the bloodstream, accumulate in the body, or cause side effects, ensuring their safety. Therefore, this study aimed to modify TiO2 NP surfaces to inhibit their uptake in skin cells. Inspired by protein corona studies, bovine serum albumin (BSA) was chosen to functionalize TiO2 NP surfaces via physical adsorption. The maximum BSA adsorption occurred at pH 5.0. The physicochemical properties (size, ζ-potential, morphology, ultraviolet (UV) absorption efficiency, and sun protection factor (SPF)) of TiO2 -BSA NPs were comparable to those of TiO2 NPs, indicating that these properties did not affect cellular uptake. In the safety evaluation, TiO2 NPs and TiO2 -BSA NPs exhibited high biocompatibility with skin cells and no phototoxicity after UVA and UVB irradiation. In the efficacy evaluation, both NPs possessed the same photoprotection abilities, reducing membrane damage and DNA breakage after UVA irradiation. Compared with TiO2 NPs, TiO2 -BSA NPs showed substantially reduced skin penetration in Franz diffusion cells (91%) and human immortalized keratinocyte (HaCaT) cells (89%). A qualitative cellular uptake study using transmission electron microscopy and confocal laser scanning microscopy confirmed that TiO2 NPs were more abundant than TiO2 -BSA NPs inside the HaCaT cells. These findings indicate that TiO2 surface functionalization with BSA inhibits cellular uptake in skin cells while maintaining safety and UV protection efficacy, which might be extended to other NP-based sunscreens.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app