Journal Article
Review
Add like
Add dislike
Add to saved papers

Non-stem cell-derived exosomes: a novel therapeutics for neurotrauma.

Neurotrauma, encompassing traumatic brain injuries (TBI) and spinal cord injuries (SCI) impacts a significant portion of the global population. While spontaneous recovery post-TBI or SCI is possible, recent advancements in cell-based therapies aim to bolster these natural reparative mechanisms. Emerging research indicates that the beneficial outcomes of such therapies might be largely mediated by exosomes secreted from the administered cells. While stem cells have garnered much attention, exosomes derived from non-stem cells, including neurons, Schwann cells, microglia, and vascular endothelial cells, have shown notable therapeutic potential. These exosomes contribute to angiogenesis, neurogenesis, and axon remodeling, and display anti-inflammatory properties, marking them as promising agents for neurorestorative treatments. This review provides an in-depth exploration of the current methodologies, challenges, and future directions regarding the therapeutic role of non-stem cell-derived exosomes in neurotrauma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app