Add like
Add dislike
Add to saved papers

The Optimization Design of Macrophage Membrane Camouflaging Liposomes for Alleviating Ischemic Stroke Injury through Intranasal Delivery.

Ischemic stroke is associated with a high mortality rate, and effective treatment strategies are currently lacking. In this study, we aimed to develop a novel nano delivery system to treat ischemic stroke via intranasal administration. A three-factor Box-Behnken experimental design was used to optimize the formulation of liposomes co-loaded with Panax notoginseng saponins (PNSs) and Ginsenoside Rg3 (Rg3) (Lip-Rg3/PNS). Macrophage membranes were coated onto the surface of the optimized liposomes to target the ischemic site of the brain. The double-loaded liposomes disguised by macrophage membranes (MM-Lip-Rg3/PNS) were spherical, in a "shell-core" structure, with encapsulation rates of 81.41% (PNS) and 93.81% (Rg3), and showed good stability. In vitro, MM-Lip-Rg3/PNS was taken up by brain endothelial cells via the clathrin-dependent endocytosis and micropinocytosis pathways. Network pharmacology experiments predicted that MM-Lip-Rg3/PNS could regulate multiple signaling pathways and treat ischemic stroke by reducing apoptosis and inflammatory responses. After 14 days of treatment with MM-Lip-Rg3/PNS, the survival rate, weight, and neurological score of middle cerebral artery occlusion (MCAO) rats significantly improved. The hematoxylin and eosin (H&E) and TUNEL staining results showed that MM-Lip-Rg3/PNS can reduce neuronal apoptosis and inflammatory cell infiltration and protect the ischemic brain. In vivo biological experiments have shown that free Rg3, PNS, and MM-Lip-Rg3/PNS can alleviate inflammation and apoptosis, especially MM-Lip-Rg3/PNS, indicating that biomimetic liposomes can improve the therapeutic effects of drugs. Overall, MM-Lip-Rg3/PNS is a potential biomimetic nano targeted formulation for ischemic stroke therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app