Add like
Add dislike
Add to saved papers

Peculiarities of ion homeostasis in neurons containing calcium-permeable AMPA receptors.

Glutamate excitotoxicity accompanies numerous brain pathologies, including traumatic brain injury, ischemic stroke, and epilepsy. Disturbances of the ion homeostasis, mitochondria dysfunction, and further cell death are considered the main detrimental consequences of excitotoxicity. It is well known that neurons demonstrate different vulnerability to pathological exposures. In this regard, neurons containing calcium-permeable AMPA receptors (CP-AMPARs) may show higher susceptibility to excitotoxicity due to an additional pathway of Ca2+ influx. Here, we demonstrate that neurons containing CP-AMPARs are characterized by the higher amplitude of the glutamate-induced elevation of intracellular Ca2+ concentration ([Ca2+ ]i ) and slower restoration of [Ca2+ ]i level compared to non-CP-AMPA neurons. Moreover, we have found that NASPM, an antagonist of CP-AMPARs, significantly decreases the amplitude of the [Ca2+ ]i elevation induced by glutamate or selective AMPARs agonist, 5-fluorowillardiine. In contrast, the antagonists of NMDARs or KARs affect insignificantly. We have also described some peculiarities of Na+, K+, and H+ intracellular dynamics in neurons containing CP-AMPARs. In particular, the amplitude of [Na+ ]i elevation was lower compared to non-CP-AMPA neurons, whereas the amplitude of [K+ ]i decrease was higher. We have shown the significant inverse correlation between [K+ ]i and [Ca2+ ]i and between intracellular pH and [Na+ ]i in CP-AMPARs-containing and non-CP-AMPA neurons upon glutamate excitotoxicity. Our data indicate that CP-AMPARs-mediated Ca2+ influx and slow removal of Ca2+ from the cytosol may underlie the vulnerability of the CP-AMPARs-containing neurons to glutamate excitotoxicity. Further studies of the mechanisms mediating the disturbances in ion homeostasis are crucial for developing new approaches for protecting these neurons at brain pathologies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app