Add like
Add dislike
Add to saved papers

Structural changes in Rochelle salt on phase transitions revisited in a multi-temperature single-crystal X-ray diffraction study.

Phase transitions in Rochelle salt [sodium potassium L(+)-tartrate tetrahydrate] are revisited in a single-crystal X-ray diffraction multi-temperature study on cooling from 308 to 100 K across the high-temperature paraelectric (PE) ↔ ferroelectric ↔ low-temperature PE phase transition points. The results of structure refinement using three different models (a harmonic with and without disorder, and an anharmonic) were compared. The temperature dependencies of anisotropic displacement parameters (ADPs) and Ueq , which can be calculated directly from ADPs, for the low-temperature PE phase indicate clearly the dynamic nature of disorder of the K1 atoms. The structures of the low-temperature and the high-temperature PE phases are compared for the first time at multiple temperatures for each phase based on diffraction data collected from the same single crystal. The data indicate that the high-temperature and the low-temperature paraelectric phases are probably not two different phases, as was assumed in earlier works, but are structurally the same phase at different temperatures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app