Add like
Add dislike
Add to saved papers

Stochastic Computing Convolutional Neural Network Architecture Reinvented for Highly Efficient Artificial Intelligence Workload on Field-Programmable Gate Array.

Stochastic computing (SC) has a substantial amount of study on application-specific integrated circuit (ASIC) design for artificial intelligence (AI) edge computing, especially the convolutional neural network (CNN) algorithm. However, SC has little to no optimization on field-programmable gate array (FPGA). Scaling up the ASIC logic without FPGA-oriented designs is inefficient, while aggregating thousands of bitstreams is still challenging in the conventional SC. This research has reinvented several FPGA-efficient 8-bit SC CNN computing architectures, i.e., SC multiplexer multiply-accumulate, multiply-accumulate function generator, and binary rectified linear unit, and successfully scaled and implemented a fully parallel CNN model on Kintex7 FPGA. The proposed SC hardware only compromises 0.14% accuracy compared to binary computing on the handwriting Modified National Institute of Standards and Technology classification task and achieved at least 99.72% energy saving per image feedforward and 31× more data throughput than modern hardware. Unique to SC, early decision termination pushed the performance baseline exponentially with minimum accuracy loss, making SC CNN extremely lucrative for AI edge computing but limited to classification tasks. The SC's inherent noise heavily penalizes CNN regression performance, rendering SC unsuitable for regression tasks.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app