Add like
Add dislike
Add to saved papers

Strip loaded waveguide amplifiers based on erbium-doped nanocomposites with 17 dB internal net gain.

Optics Express 2024 Februrary 27
We propose a strip loaded amplifier employing SU-8 as the loaded waveguide and nanoparticles (NPs)-polymethyl methacrylate (PMMA) as the cladding layer. By leveraging the undoped SU-8 loaded waveguide, the polymer waveguide amplifier accomplished remarkably low transmission losses, reaching as low as 1.8 dB/cm at 1530 nm. We prepared NPs-PMMA nanocomposite by utilizing NaLu0.1 Y0.7 F4 : Er3+ , Yb3+ @NaLuF4 core-shell nanoparticles, which exhibited a significantly enhanced lifetime of 6.15 ms. An internal net gain of up to 17.7 dB was achieved on a strip loaded waveguide with a length as short as 0.5 cm when the on-chip pump power was 77 mW. Signal enhancement (SE) was measured at different wavelengths, revealing that the strip loaded waveguide exhibited broadband SE ranging from 1510 nm to 1570 nm, covering the C-band. To the best of our knowledge, this work has achieved the highest gain results reported thus far on a polymer matrix and provides an efficient method for optical amplification in passive devices on silicon and Si3 N4 platforms, leveraging the ease of integration of polymer materials with diverse photonic platforms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app