Add like
Add dislike
Add to saved papers

The effects of N-glycosylation on the expression and transport activity of OATP1A2 and OATP2B1.

Organic anion transporting polypeptide (OATP)1A2 and OATP2B1 have potential N-glycosylation sites, but their influence remains unclear. This study aimed to identify the N-glycosylation sites of OATP1A2/2B1 and investigate their impact on the expression and function of OATP1A2/2B1. Human embryonic kidney cells expressing OATP1A2 or OATP2B1 (HEK293-OATP1A2/2B1) were exposed to tunicamycin, an N-glycosylation inhibitor, and a plasma membrane fraction (PMF) Western blot assay and an estrone 3-sulfate (E3S) uptake study were conducted. HEK293-OATP1A2/OATP2B1 cell lines with mutation(s) at potential N-glycosylation sites were established, and the Western blotting and uptake study were repeated. Tunicamycin reduced the PMF levels and E3S uptake of OATP1A2/OATP2B1. The Asn124Gln, Asn135Gln, and Asn492Gln mutations in OATP1A2 and Asn176Gln and Asn538Gln mutations in OATP2B1 reduced the molecular weights of the OATP molecules and their PMF levels. The PMF levels of OATP1A2 Asn124/135Gln, OATP1A2 Asn124/135/492Gln, and OATP2B1 Asn176/538Gln were further reduced. The maximum transport velocities of OATP1A2 Asn124Gln, OATP1A2 Asn135Gln, and OATP2B1 Asn176/538Gln were markedly reduced to 10%, 4%, and 10% of the wild-type level, respectively. In conclusion, the N-glycans at Asn124 and Asn135 of OATP1A2 and those at Asn176 and Asn538 of OATP2B1 are essential for the plasma membrane expression of these molecules and also affect their transport function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app