Add like
Add dislike
Add to saved papers

Silicon eccentric shell nanoparticles fabricated by template-assisted deposition for Mie magnetic resonances enhanced light confinement.

Nanotechnology 2024 March 3
We report a structure of silicon eccentric shell particles array, fabricated by the SiO2 particles monolayer array assisted deposition of amorphous Si, for high-efficiency light confinement. The SiO2 particles monolayer array is tailored to regulate its interparticle distance, followed by silicon film deposition to obtain silicon eccentric shell arrays with positive and negative off-center distance e. We studied the Mie resonances of silicon solid sphere, concentric shell, eccentric shell and observed that the eccentric shell with positive off-center e supports superior light confinement because of the enhanced Mie magnetic resonances. Spectroscopic measurements and finite difference time domain simulations were conducted to examine the optical performance of the eccentric shell particles array. Results show that the Mie magnetic resonance wavelength can be easily regulated by the size of the inner void of the silicon shell to realize tunable enhanced light confinement, and D = 460/520nm silicon shell offer high enhanced light absorption efficiency at wavelength of λ=820nm, almost beyond the bandgap of the amorphous silicon.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app