Add like
Add dislike
Add to saved papers

Amyloid Beta-Mediated Neurovascular Toxicity in Alzheimer's Disease.

The brain vascular system receives one-fifth of the total oxygen from the cardiac output, and this transport system is highly dependent on blood-brain barrier (BBB) integrity. The cerebral blood flow is controlled by neurovascular coupling through neurovascular units (NVUs). The NVU includes different types of cells, such as mural cells, astrocytes, pericytes, endothelial cells (ECs), and vascular smooth muscle cells (VSMCs). The cellular composition of NVU varies throughout the vascular tree. Amyloid β (Aβ) is abundantly present in the central nervous system, but the pathological accumulation of misfolded Aβ protein causes vascular damage, resulting in neurovascular dysfunction. Aβ aggregation can activate the astrocytes and endothelial cells. It is followed by pericyte degeneration which results in dysregulation of cerebral blood flow (CBF), neurovascular uncoupling, and BBB breakdown. Thus, understanding the cellular and molecular mechanisms of Aβ-induced neurovascular toxicity is crucial for determining normal and diseased brain function. This chapter discusses the components of NVU, neurovascular uncoupling, Aβ-induced cerebrovascular reactivity, and cerebral blood flow reduction in neurodegenerative disorders, with special emphasis on Alzheimer's disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app