Add like
Add dislike
Add to saved papers

New blend of renewable bioplastic based on starch and acetylated xylan with high resistance to oil and water vapor.

Carbohydrate Research 2024 Februrary 23
Renewable materials of biological origin exhibit attractive properties in relation to traditional plastics, as they can be partially or completely replaced, thereby reducing environmental impacts. Hemicelluloses are a group of polysaccharides that have expanded applications when acetylated. Acetylation can improve the mechanical strength and water vapor barrier properties of xylan-based bioplastics. By partially acetylating xylan in the present study, it was possible to use water as a solvent for the film-forming solution and starch as a second polysaccharide in the formation of bioplastics. Xylan was modified via partial chemical acetylation by varying the reaction time, solvent, and catalyst content. The bioplastics were formed by non-acetylated xylan and acetylated xylan with degrees of substitution (DS) of 0.45 and 0.9, respectively, with starch to form blends using glycerol as a plasticizer. Acetylation with DS 0.45 showed better results in increasing the hydrophilicity of the bioplastic. On the other hand, acetylation influenced the thermal stability of bioplastics, increasing the maximum temperature of the degradation rate from 302 °C to 329 °C and 315 °C, owing to changes in the crystallinity of the polymers. In addition to the modulus of elasticity 2.99 to 290.61 and 274.67 MPa for the non-acetylated bioplastic and the bioplastic with DS of 0.45 and 0.90, respectively. Thus, the films obtained presented suitable physicochemical properties for use in various industrial applications, such as active and intelligent packaging in the food sector.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app