Add like
Add dislike
Add to saved papers

In vitro function, assembly, and interaction of primary cell wall cellulose synthase homotrimers.

bioRxiv 2024 Februrary 16
Plant cell walls contain a meshwork of cellulose fibers embedded into a matrix of other carbohydrate and non-carbohydrate-based biopolymers. This composite material exhibits extraordinary properties, from stretchable and pliable cell boundaries to solid protective shells. Cellulose, a linear glucose polymer, is synthesized and secreted across the plasma membrane by cellulose synthase (CesA). Plants express several CesA isoforms, with different subsets necessary for primary and secondary cell wall biogenesis. The produced cellulose chains can be organized into fibrillar structures and fibrillogenesis likely requires the supramolecular organization of CesAs into pseudo sixfold symmetric complexes (CSCs). Here, we structurally and functionally characterize a set of soybean (Gm) CesA isoforms implicated in primary cell wall biogenesis. Cryogenic electron microscopy analyses of catalytically active GmCesA1, GmCesA3, and GmCesA6 reveal their assembly into homotrimeric complexes, stabilized by a cytosolic plant conserved region. Contrasting secondary cell wall CesAs, a peripheral position of the C-terminal transmembrane helix creates a large, lipid-exposed lateral opening of the enzymes' cellulose-conducting transmembrane channels. Co-purification experiments reveal that homotrimers of different CesA isoforms interact in vitro and that this interaction is independent of the enzymes' N-terminal cytosolic domains. Our data suggest that cross-isoform interactions are mediated by the class-specific region, which forms a hook-shaped protrusion of the catalytic domain at the cytosolic water-lipid interface. Further, inter-isoform interactions lead to synergistic catalytic activity, suggesting increased cellulose biosynthesis upon homotrimer interaction. Combined, our structural and biochemical data favor a model by which homotrimers of different CesA isoforms assemble into a microfibril-producing CSC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app