Add like
Add dislike
Add to saved papers

Scalable and Efficient Generation of Mouse Primordial Germ Cell-like Cells.

bioRxiv 2024 Februrary 16
Primordial germ cells (PGCs) are the founder cells of the germline. The ability to generate PGC-like cells (PGCLCs) from pluripotent stem cells has advanced our knowledge of gametogenesis and holds promise for developing infertility treatments. However, generating an ample supply of PGCLCs for demanding applications such as high-throughput genetic screens has been a limitation. Here, we demonstrated that simultaneous overexpressing 4 transcriptional factors - Nanog and three PGC master regulators Prdm1 , Prdm14 and Tfap2c - in suspended mouse epiblast like cells (EpiLCs) and formative embryonic stem cells (ESCs) results in efficient and cost-effective production of PGCLCs. The overexpression of Nanog enhances the PGC regulatory network and suppresses differentiation of somatic lineages, enabling a significant improvement in the efficiency of PGCLC production. Transcriptomic analysis reveals that differentiated PGCLCs exhibit similarities to in vivo PGCs and are more advanced compared to cytokine-induced PGCLCs. These differentiated PGCLCs could be sustained over prolonged periods of culture and could differentiate into spermatogonia-like cells in vitro . Importantly, the ability to produce PGCLCs at scale, without using costly cytokines, enables biochemical and functional genomic screens to dissect mechanisms of germ cell development and infertility.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app