Add like
Add dislike
Add to saved papers

Quantum Dots in Transition Metal Dichalcogenides Induced by Atomic-Scale Deformations.

ACS Photonics 2024 Februrary 22
Single-photon emission from monolayer transition metal dichalcogenides requires the existence of localized, atom-like states within the extended material. Here, we predict from first-principles the existence of quantum dots around atomic-scale protrusions, which result from substrate roughness or particles trapped between layers. Using density functional theory, we find such deformations to give rise to local membrane stretching and curvature, which lead to the emergence of gap states. Having enhanced outer-surface localization, they are prone to mixing with states pertaining to chalcogen vacancies and adsorbates. If the deformation is sharp, the conduction band minimum furthermore assumes atomic and valley-mixed character, potentially enabling quantum light emission. When such structural defects are arranged in an array, the new states couple to form energetically separated sub-bands, holding promise for intriguing superlattice dynamics. All of the observed features are shown to be closely linked to elastic, deformation-induced intra- and intervalley scattering processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app