Add like
Add dislike
Add to saved papers

Exploring Rotational Diffusion with Plasmonic Coupling.

ACS Photonics 2024 Februrary 22
Measuring the orientation dynamics of nanoparticles and nonfluorescent molecules in real time with optical methods is still a challenge in nanoscience and biochemistry. Here, we examine optoplasmonic sensing taking the rotational diffusion of plasmonic nanorods as an experimental model. Our detection method is based on monitoring the dark-field scattering of a relatively large sensor gold nanorod (GNR) (40 nm in diameter and 112 nm in length) as smaller plasmonic nanorods cross its near field. We observe the rotational motion of single small gold nanorods (three samples with about 5 nm in diameter and 15.5, 19.1, and 24.6 nm in length) in real time with a time resolution around 50 ns. Plasmonic coupling enhances the signal of the diffusing gold nanorods, which are 1 order of magnitude smaller in volume (about 300 nm3 ) than those used in our previous rotational diffusion experiments. We find a better angular sensitivity with plasmonic coupling in comparison to the free diffusion in the confocal volume. Yet, the angle sensitivity we find with plasmonic coupling is reduced compared to the sensitivity expected from simulations at fixed positions due to the simultaneous translational and rotational diffusion of the small nanorods. To get a reliable plasmonic sensor with the full angular sensitivity, it will be necessary to construct a plasmonic assembly with positions and orientations nearly fixed around the optimum geometry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app