Add like
Add dislike
Add to saved papers

Replication fork blocking deficiency leads to a reduction of rDNA copy number in budding yeast.

IScience 2024 March 16
The ribosomal RNA genes are encoded as hundreds of tandem repeats, known as the rDNA, in eukaryotes. Maintaining these copies seems to be necessary, but copy number changes in an active manner have been reported in only frogs, flies, Neurospora , and yeast. In the best-studied system, yeast, a protein (Fob1) binds to the rDNA and unidirectionally blocks the replication fork. This block stimulates rDNA double-strand breaks (DSBs) leading to recombination and copy number change. To date, copy number maintenance and concerted evolution mediated by rDNA repeat turnover were the proposed benefits of Fob1-dependent replication fork arrest. In this study, we tested whether Fob1 provides these benefits and found that rDNA copy number decreases when FOB1 is deleted, suggesting that Fob1 is important for recovery from low copy number. We suppose that replication fork stalling at rDNA is necessary for recovering from rDNA copy number loss in other species as well.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app