Add like
Add dislike
Add to saved papers

IL-37d enhances COP1-mediated C/EBPβ degradation to suppress spontaneous neutrophil migration and tumor progression.

Cell Reports 2024 Februrary 16
The spontaneous migration of bone marrow neutrophils (BMNs) is typically induced by distant tumor cells during the early stage of the tumor and critically controls tumor progression and metastases. Therefore, identifying the key molecule that prevents this process is extremely important for suppressing tumors. Interleukin-37 (IL-37) can suppress pro-inflammatory cytokine generation via an IL-1R8- or Smad3-mediated pathway. Here, we demonstrate that human neutrophil IL-37 is responsively reduced by tumor cells and the recombinant IL-37 isoform d (IL-37d) significantly inhibits spontaneous BMN migration and tumor lesion formation in the lung by negatively modulating CCAAT/enhancer binding protein beta (C/EBPβ) in a Lewis lung carcinoma (LLC)-inducing lung cancer mouse model. Mechanistically, IL-37d promotes C/EBPβ ubiquitination degradation by facilitating ubiquitin ligase COP1 recruitment and disrupts C/EBPβ DNA binding abilities, thereby reducing neutrophil ATP generation and migration. Our work reveals an anti-tumor mechanism for IL-37 via destabilization of C/EBPβ to prevent spontaneous BMN migration and tumor progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app