Add like
Add dislike
Add to saved papers

Harnessing the regenerative potential of interleukin11 to enhance heart repair.

bioRxiv 2024 January 31
Balancing between regenerative processes and fibrosis is crucial for heart repair 1 . However, strategies to regulate the balance between these two process are a barrier to the development of effective therapies for heart regeneration. While Interleukin 11 (IL11) is known as a fibrotic factor for the heart 2-4 , its contribution to heart regeneration remains poorly understood. Here, we uncovered that il11a can initiate robust regenerative programs in the zebrafish heart, including cell cycle reentry of cardiomyocytes (CMs) and coronary expansion, even in the absence of injury. However, the prolonged il11a induction in uninjured hearts causes persistent fibroblast emergence, resulting in cardiac fibrosis. While deciphering the regenerative and fibrotic effects, we found that il11 -dependent fibrosis, but not il11 -dependent regeneration, is mediated through ERK activity, implying that the dual effects of il11a on regeneration and fibrosis can be uncoupled. To harness the regenerative ability of il11a for injured hearts, we devised a combinatorial treatment through il11a induction with ERK inhibition. Using this approach, we observed enhanced CM proliferation with mitigated fibrosis, achieving a balance between stimulating regenerative processes and curbing fibrotic outcomes. Thus, our findings unveil the mechanistic insights into regenerative roles of il11 signaling, offering the potential therapeutic avenues that utilizes a paracrine regenerative factor to foster cardiac repair without exacerbating the fibrotic responses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app