Add like
Add dislike
Add to saved papers

Age dictates brain functional connectivity and axonal integrity following repetitive mild traumatic brain injuries.

bioRxiv 2024 January 27
Traumatic brain injuries (TBI) present a major public health challenge, demanding an in-depth understanding of age-specific signs and vulnerabilities. Aging not only significantly influences brain function and plasticity but also elevates the risk of hospitalizations and death following repetitive mild traumatic brain injuries (rmTBIs). In this study, we investigate the impact of age on brain network changes and white matter properties following rmTBI employing a multi-modal approach that integrates resting-state functional magnetic resonance imaging (rsfMRI), graph theory analysis, diffusion tensor imaging (DTI), and Neurite Orientation Dispersion and Density Imaging (NODDI). Utilizing the CHIMERA model, we conducted rmTBIs or sham (control) procedures on young (2.5-3 months old) and aged (22-month-old) male and female mice to model high risk groups. Functional and structural imaging unveiled age-related reductions in communication efficiency between brain regions, while injuries induced opposing effects on the small-world index across age groups, influencing network segregation. Functional connectivity analysis also identified alterations in 79 out of 148 brain regions by age, treatment (sham vs. rmTBI), or their interaction. Injuries exerted pronounced effects on sensory integration areas, including insular and motor cortices. Age-related disruptions in white matter integrity were observed, indicating alterations in various diffusion directions (mean, radial, axial diffusivity, fractional anisotropy) and density neurite properties (dispersion index, intracellular and isotropic volume fraction). Inflammation, assessed through Iba-1 and GFAP markers, correlated with higher dispersion in the optic tract, suggesting a neuroinflammatory response in aged animals. These findings provide a comprehensive understanding of the intricate interplay between age, injuries, and brain connectivity, shedding light on the long-term consequences of rmTBIs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app