Add like
Add dislike
Add to saved papers

PI3K/mTOR is a therapeutically targetable genetic dependency in diffuse intrinsic pontine glioma.

Diffuse midline glioma (DMG), including tumors diagnosed in the brainstem (diffuse intrinsic pontine glioma - DIPG), are uniformly fatal brain tumors that lack effective treatment. Analysis of CRISPR-Cas9 loss-of-function gene deletion screens identified PIK3CA and MTOR as targetable molecular dependencies across DIPG patient models, highlighting the therapeutic potential of the blood-brain barrier penetrant PI3K/Akt/mTOR inhibitor, paxalisib. At the human equivalent maximum tolerated dose, mice treated with paxalisib experienced systemic glucose feedback and increased insulin levels commensurate with patients using PI3K inhibitors. To exploit genetic dependence and overcome resistance whilst maintaining compliance and therapeutic benefit, we combined paxalisib with the anti-hyperglycemic drug, metformin. Metformin restored glucose homeostasis and decreased phosphorylation of the insulin receptor in vivo, a common mechanism of PI3K-inhibitor resistance, extending survival of orthotopic models. DIPG models treated with paxalisib increased calcium-activated PKC signaling. The brain penetrant PKC inhibitor enzastaurin in combination with paxalisib, synergistically extended the survival of multiple orthotopic patient-derived and immunocompetent syngeneic allograft models; benefits potentiated in combination with metformin and standard-of-care radiotherapy. Therapeutic adaptation was assessed using spatial transcriptomics and ATAC-sequencing, identifying changes in myelination and tumor immune microenvironment crosstalk. Together, we have identified a clinically relevant DIPG therapeutic combinatorial approach.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app