Add like
Add dislike
Add to saved papers

Achieving highly efficient 2D SnC monolayer-based photocatalyst for water splitting via a synergistic strategy of S-scheme heterostructure construction and silicon doping.

Nanoscale 2024 Februrary 6
Owing to its stable graphene-like honeycomb structure, suitable band gap, and nontoxicity, SnC monolayer (ML) has attracted increasing attention in photocatalytic applications. One pertinent obstacle inherent to SnC ML-based photocatalysts has been the high energy barrier in hydrogen evolution reaction (HER) that always requires external energy input and/or strongly acidic conditions. Herein, we propose a two-dimensional (2D) SnC/ZrS2 van der Waals heterostructure (vdWHS) for highly efficient photocatalytic water splitting using first-principles calculations. The results show that the pristine vdWHS is an S-scheme heterostructure that works in acidic conditions for water splitting owing to the high energy barrier in HER. Notably, detailed further investigations show that doping Si in the SnC ML of the vdWHS can solve this high barrier problem, leading to a high-performance low-cost photocatalyst. Our work offers a convenient strategy to solve the notorious high barrier problem in HER that often troubles the SnC ML and other 2D materials such as transition metal dichalcogenide MLs for the design and fabrication of highly efficient photocatalysts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app