Add like
Add dislike
Add to saved papers

Ultralow Electric Current-Assisted Magnetization Switching due to Thermally Engineered Magnetic Anisotropy.

Control of magnetic anisotropy in thin films with perpendicular magnetic anisotropy is of paramount importance for the development of spintronics with ultralow-energy consumption and high density. Traditional magnetoelectric heterostructures utilized the synergistic effect of piezoelectricity and magnetostriction to realize the electric field control of magnetic anisotropy, resulting in additional fabrication and modulation processes and a complicated device architecture. Here, we have systematically investigated the electric current tuning of the magnetic properties of the metallic NiCo2 O4 film with intrinsic perpendicular magnetic anisotropy. Ferrimagnetic-to-paramagnetic phase transition has been induced through Joule heating, resulting in a rapid decrease of both magnetic coercivity and moment. An ultralow current density of 2.5 × 104 A/cm2 , which is 2 to 3 orders magnitude lower than that of conventional spin transfer torque devices, has been verified to be effective for the control of the magnetic anisotropy of NiCo2 O4 . Successful triggering of magnetic switching has been realized through the application of a current pulse. These findings provide new perspectives toward the electric control of magnetic anisotropy and design of spintronics with an ultralow driving current density.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app