Add like
Add dislike
Add to saved papers

Mage transposon: a novel gene delivery system for mammalian cells.

Nucleic Acids Research 2024 Februrary 2
Transposons, as non-viral integration vectors, provide a secure and efficient method for stable gene delivery. In this study, we have discovered Mage (MG), a novel member of the piggyBac(PB) family, which exhibits strong transposability in a variety of mammalian cells and primary T cells. The wild-type MG showed a weaker insertion preference for near genes, transcription start sites (TSS), CpG islands, and DNaseI hypersensitive sites in comparison to PB, approaching the random insertion pattern. Utilizing in silico virtual screening and feasible combinatorial mutagenesis in vitro, we effectively produced the hyperactive MG transposase (hyMagease). This variant boasts a transposition rate 60% greater than its native counterpart without significantly altering its insertion pattern. Furthermore, we applied the hyMagease to efficiently deliver chimeric antigen receptor (CAR) into T cells, leading to stable high-level expression and inducing significant anti-tumor effects both in vitro and in xenograft mice models. These findings provide a compelling tool for gene transfer research, emphasizing its potential and prospects in the domains of genetic engineering and gene therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app