Add like
Add dislike
Add to saved papers

Active search for a reactive target in thermal environments.

We study a stochastic process where an active particle, modeled by a one-dimensional run-and-tumble particle, searches for a target with a finite absorption strength in thermal environments. Solving the Fokker-Planck equation for a uniform initial distribution, we analytically calculate the mean searching time (MST), the time for the active particle to be finally absorbed, and show that there exists an optimal self-propulsion velocity of the active particle at which MST is minimized. As the diffusion constant increases, the optimal velocity changes from a finite value to zero, which implies that a purely diffusive Brownian motion outperforms an active motion in terms of searching time. Depending on the absorption strength of the target, the transition of the optimal velocity becomes either continuous or discontinuous, which can be understood based on the Landau approach. In addition, we obtain the phase diagram indicating the passive-efficient and the active-efficient regions. Finally, the initial condition dependence of MST is presented in limiting cases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app