Add like
Add dislike
Add to saved papers

The Influence of Graphene Oxide-Fe 3 O 4 Differently Conjugated with 10-Hydroxycampthotecin and a Rotating Magnetic Field on Adenocarcinoma Cells.

Nanoparticles (e.g., graphene oxide, graphene oxide-Fe3 O4 nanocomposite or hexagonal boron nitride) loaded with anti-cancer drugs and targeted at cancerous cells allowed researchers to determine the most effective in vitro conditions for anticancer treatment. For this reason, the main propose of the present study was to determine the effect of graphene oxide (GO) with iron oxide (Fe3 O4 ) nanoparticles (GO-Fe3 O4 ) covalently (c-GO-Fe3 O4 -HCPT) and non-covalently (nc-GO-Fe3 O4 -HCPT) conjugated with hydroxycamptothecin (HCPT) in the presence of a rotating magnetic field (RMF) on relative cell viability using the MCF-7 breast cancer cell line. The obtained GO-Fe3 O4 nanocomposites demonstrated the uniform coverage of the graphene flakes with the nanospheres, with the thickness of the flakes estimated as ca. 1.2 nm. The XRD pattern of GO-Fe3 O4 indicates that the crystal structure of the magnetite remained stable during the functionalization with HCPT that was confirmed with FTIR spectra. After 24 h, approx. 49% and 34% of the anti-cancer drug was released from nc-GO-Fe3 O4 -HCPT and c-GO-Fe3 O4 -HCPT, respectively. The stronger bonds in the c-GO-Fe3 O4 -HCPT resulted in a slower release of a smaller drug amount from the nanocomposite. The combined impact of the novel nanocomposites and a rotating magnetic field on MCF-7 cells was revealed and the efficiency of this novel approach has been confirmed. However, MCF-7 cells were more significantly affected by nc-GO-Fe3 O4 -HCPT. In the present study, it was found that the concentration of nc-GO-Fe3 O4 -HCPT and a RMF has the highest statistically significant influence on MCF-7 cell viability. The obtained novel nanocomposites and rotating magnetic field were found to affect the MCF-7 cells in a dose-dependent manner. The presented results may have potential clinical applications, but still, more in-depth analyses need to be performed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app