Add like
Add dislike
Add to saved papers

Novel machine learning model to improve performance of an early warning system in hospitalized patients: a retrospective multisite cross-validation study.

EClinicalMedicine 2023 December
BACKGROUND: Threshold-based early warning systems (EWS) are used to predict adverse events (Aes). Machine learning (ML) algorithms that incorporate all EWS scores prior to an event may perform better in hospitalized patients.

METHODS: The deterioration index (DI) is a proprietary EWS. A threshold of DI >60 is used to predict a composite AE: all-cause mortality, cardiac arrest, transfer to intensive care, and evaluation by the rapid response team in practice. The DI scores were collected for adult patients (≥18 y-o) hospitalized on medical or surgical services during 8-23-2021 to 3-31-2022 from four different Mayo Clinic sites in the United States. A novel ML model was developed and trained on a retrospective cohort of hospital encounters. DI scores were represented in a high-dimensional space using random convolution kernels to facilitate training of a classifier and the area under the receiver operator characteristics curve (AUC) was calculated. Multiple time intervals prior to an AE were analyzed. A leave-one-out cross-validation protocol was used to evaluate performance across separate clinic sites.

FINDINGS: Three different classifiers were trained on 59,617 encounter-derived DI scores in high-dimensional feature space and the AUCs were compared to two threshold models. All three tested classifiers improved the AUC over the threshold approaches from 0.56 and 0.57 to 0.76, 0.85 and 0.94. Time interval analysis of the top performing classifier showed best accuracy in the hour before an event occurred (AUC 0.91), but prediction held up even in the 12 h before an AE (AUC 0.80 at minus 12 h, 0.81 at minus 9 h, 0.85 at minus 6 h, and 0.88 at minus 3 h before an AE). Multisite cross-validation using leave-one-out approach on data from four different clinical sites showed broad generalization performance of the top performing ML model with AUC of 0.91, 0.91, 0.95, and 0.91.

INTERPRETATION: A novel ML model that incorporates all the longitudinal DI scores prior to an AE in a hospitalized patient performs better at outcome prediction than the currently used threshold model. The use of clinical data, a generalized ML technique, and successful multisite cross-validation demonstrate the feasibility of our model in clinical implementation.

FUNDING: No funding to report.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app