Add like
Add dislike
Add to saved papers

Dexamethasone Suppresses IL-33-exacerbated Malignant Phenotype of U87MG Glioblastoma Cells via NF-κB and MAPK Signaling Pathways.

BACKGROUND: Interleukin (IL)-33 is highly expressed in glioblastoma (GBM) and promotes tumor progression. Targeting IL-33 may be an effective strategy for the treatment of GBM. Dexamethasone (DEX) is a controversial drug routinely used clinically in GBM therapy. Whether DEX has an effect on IL-33 is unknown. This study aimed to investigate the effect of DEX on IL-33 and the molecular mechanisms involved.

METHODS: U87MG cells were induced by tumor necrosis factor (TNF)-α to express IL-33 and then treated with DEX. The mRNA levels of IL-33, NF-κB p65, ERK1/2, and p38 were determined by real-time quantitative PCR. The expression of IL-33, IkBα (a specific inhibitor of NF-κB) and MKP-1 (a negative regulator of MAPK), as well as the phosphorylation of NF-κB, ERK1/2 and p38 MAPK, were detected by Western blotting. The secretion of IL-33 was measured by ELISA. The proliferation, migration and invasion of U87MG cells were detected by CCK8 and transwell assays, respectively.

RESULTS: DEX significantly reduced TNF-α-induced production of IL-33 in U87MG cells, which was dependent on inhibiting the activation of the NF-κB, ERK1/2 and p38 MAPK signaling pathways, and was accompanied by the increased expression of IkBα but not MKP-1. Furthermore, the proliferation, migration and invasion of U87MG cells exacerbated by IL-33 were suppressed by DEX.

CONCLUSION: DEX inhibited the production and tumor-promoting function of IL-33. Whether DEX can benefit GBM patients remains controversial. Our results suggest that GBM patients with high IL-33 expression may benefit from DEX treatment and deserve further investigation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app