Add like
Add dislike
Add to saved papers

Th22 is the effector cell of thymosin β15-induced hair regeneration in mice.

BACKGROUND: Thymosin beta family has a significant role in promoting hair regeneration, but which type of T cells play a key role in this process has not been deeply studied. This research aimed to find out the subtypes of T cell that play key role in hair regeneration mediated by thymosin beta 15 (Tβ15).

METHODS: Ready-to-use adenovirus expressing mouse Tmsb15b (thymosin beta 15 overexpression, Tβ15 OX) and lentivirus-Tβ15 short hairpin RNA (Tβ15 sh) were used to evaluate the role of Tβ15 in hair regeneration and development. The effect of Th22 cells on hair regeneration was further studied by optimized Th22-skewing condition medium and IL-22 binding protein (IL-22BP, an endogenous antagonist of IL-22, also known as IL-22RA2) in both ex vivo culture C57BL/6J mouse skin and BALB/c nude mice transplanted with thymus organoid model.

RESULTS: The results show that Tβ15, the homologous of Tβ4, can promote hair regeneration by increasing the proliferation activity of hair follicle cells. In addition, high-level expression of Tβ15 can not only increase the number of Th22 cells around hair follicles but also accelerate the transformation of hair follicles to maturity. Consistent with the expected results, when the IL-22BP inhibitor was used to interfere with Th22, the process of hair regeneration was blocked.

CONCLUSIONS: In conclusion, Th22 is the key effector cell of Tβ15 inducing hair regeneration. Both Tβ15 and Th22 may be the potential drug targets for hair regeneration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app