Add like
Add dislike
Add to saved papers

Predicting delirium and the effects of medications in hospitalized COVID-19 patients using machine learning: A retrospective study within the Korean Multidisciplinary Cohort for Delirium Prevention (KoMCoDe).

OBJECTIVE: Delirium is commonly reported from the inpatients with Coronavirus disease 2019 (COVID-19) infection. As delirium is closely associated with adverse clinical outcomes, prediction and prevention of delirium is critical. We developed a machine learning (ML) model to predict delirium in hospitalized patients with COVID-19 and to identify modifiable factors to prevent delirium.

METHODS: The data set (n = 878) from four medical centers was constructed. Total of 78 predictors were included such as demographic characteristics, vital signs, laboratory results and medication, and the primary outcome was delirium occurrence during hospitalization. For analysis, the extreme gradient boosting (XGBoost) algorithm was applied, and the most influential factors were selected by recursive feature elimination. Among the indicators of performance for ML model, the area under the curve of the receiver operating characteristic (AUROC) curve was selected as the evaluation metric.

RESULTS: Regarding the performance of developed delirium prediction model, the accuracy, precision, recall, F1 score, and the AUROC were calculated (0.944, 0.581, 0.421, 0.485, 0.873, respectively). The influential factors of delirium in this model included were mechanical ventilation, medication (antipsychotics, sedatives, ambroxol, piperacillin/tazobactam, acetaminophen, ceftriaxone, and propacetamol), and sodium ion concentration (all p  < 0.05).

CONCLUSIONS: We developed and internally validated an ML model to predict delirium in COVID-19 inpatients. The model identified modifiable factors associated with the development of delirium and could be clinically useful for the prediction and prevention of delirium in COVID-19 inpatients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app