Add like
Add dislike
Add to saved papers

Eco-friendly novel deconvoluted synchronous spectrofluorimetric approach for the determination of favipiravir, levodropropizine and moxifloxacin hydrochloride as an effective therapeutic combination for COVID-19; application in laboratory prepared mixtures and spiked human plasma.

In this work, a green, fast, and simple synchronous spectrofluorimetric approach has been developed to simultaneously determine favipiravir, levodropropizine, and moxifloxacin hydrochloride as co-administered medications for COVID-19 treatment in pure form and spiked human plasma. The synchronous fluorescence spectroscopy technique to analyze the studied drugs at Δλ = 110 nm enabled the determination of levodropropizine at 360 nm. Then, applying Fourier Self-Deconvolution to each spectra to measure favipiravir and moxifloxacin hydrochloride at peak amplitudes of 431 nm and 479 nm, respectively, without any interference. Favipiravir, levodropropizine, and moxifloxacin hydrochloride could be sensitively determined using the described approach over concentration ranges of 20-300 ng/mL, 10-600 ng/mL, and 50-500 ng/mL, respectively. The method's validation was carried out effectively in accordance with guidelines recommended by the ICH. Finally, the Eco-scale and Green Analytical Procedure Index (GAPI) techniques have been used to evaluate the greenness of the proposed method.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app