Add like
Add dislike
Add to saved papers

Size Switchable Self-Assembled Iron Oxide Aggregations Loaded with Doxorubicin for Deep Penetration and Enhanced Chemotherapy of Cancer.

ACS Applied Bio Materials 2023 December 17
Iron oxide nanoparticles (Fe3 O4 NPs) have been reported to be a promising agent for cancer therapy due to their outstanding ability in catalyzing the Fenton reaction and causing peroxidation. Generally, particles with size of hundreds of nanometers exhibit enhanced accumulation in tumor due to the enhanced permeation and retention effect. However, the large size hinders penetration within the dense collagen matrix. Here, we propose a multistage system to realize pH-responsive size switch for efficient drug delivery. In this system, ultrasmall Fe3 O4 (∼4 nm) NPs are simultaneously modified with hydrophilic mPEG and hydrophobic N , N -dibutylethylenediamine (DBE) to form pH-responsive self-assembled iron oxide aggregations (SIOA). In the acidic tumor microenvironment, the protonation of DBE makes it transit from the hydrophobic to hydrophilic state, causing the disassembly of the SIOA and the release of loaded doxorubicin. The multistage Fe3 O4 NPs demonstrate enhanced accumulation and efficient diffusion within the tumor, holding a promise for drug delivery and cancer therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app