Add like
Add dislike
Add to saved papers

Trans-Balance: Reducing demographic disparity for prediction models in the presence of class imbalance.

INTRODUCTION: Risk prediction, including early disease detection, prevention, and intervention, is essential to precision medicine. However, systematic bias in risk estimation caused by heterogeneity across different demographic groups can lead to inappropriate or misinformed treatment decisions. In addition, low incidence (class-imbalance) outcomes negatively impact the classification performance of many standard learning algorithms which further exacerbates the racial disparity issues. Therefore, it is crucial to improve the performance of statistical and machine learning models in underrepresented populations in the presence of heavy class imbalance.

METHOD: To address demographic disparity in the presence of class imbalance, we develop a novel framework, Trans-Balance, by leveraging recent advances in imbalance learning, transfer learning, and federated learning. We consider a practical setting where data from multiple sites are stored locally under privacy constraints.

RESULTS: We show that the proposed Trans-Balance framework improves upon existing approaches by explicitly accounting for heterogeneity across demographic subgroups and cohorts. We demonstrate the feasibility and validity of our methods through numerical experiments and a real application to a multi-cohort study with data from participants of four large, NIH-funded cohorts for stroke risk prediction.

CONCLUSION: Our findings indicate that the Trans-Balance approach significantly improves predictive performance, especially in scenarios marked by severe class imbalance and demographic disparity. Given its versatility and effectiveness, Trans-Balance offers a valuable contribution to enhancing risk prediction in biomedical research and related fields.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app