Add like
Add dislike
Add to saved papers

Research on augmented reality navigation of in vitro fenestration of stent-graft based on deep learning and virtual-real registration.

OBJECTIVES: In vitro fenestration of stent-graft (IVFS) demands high-precision navigation methods to achieve optimal surgical outcomes. This study aims to propose an augmented reality (AR) navigation method for IVFS, which can provide in situ overlay display to locate fenestration positions.

METHODS: We propose an AR navigation method to assist doctors in performing IVFS. A deep learning-based aorta segmentation algorithm is used to achieve automatic and rapid aorta segmentation. The Vuforia-based virtual-real registration and marker recognition algorithm are integrated to ensure accurate in situ AR image.

RESULTS: The proposed method can provide three-dimensional in situ AR image, and the fiducial registration error after virtual-real registration is 2.070 mm. The aorta segmentation experiment obtains dice similarity coefficient of 91.12% and Hausdorff distance of 2.59, better than conventional algorithms before improvement.

CONCLUSIONS: The proposed method can intuitively and accurately locate fenestration positions, and therefore can assist doctors in performing IVFS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app