Add like
Add dislike
Add to saved papers

Molecular mechanism analysis of ZmRL6 positively regulating drought stress tolerance in maize.

Stress Biol 2023 November 17
MYB-related genes, a subclass of MYB transcription factor family, have been documented to play important roles in biological processes such as secondary metabolism and stress responses that affect plant growth and development. However, the regulatory roles of MYB-related genes in drought stress response remain unclear in maize. In this study, we discovered that a 1R-MYB gene, ZmRL6, encodes a 96-amino acid protein and is highly drought-inducible. We also found that it is conserved in both barley (Hordeum vulgare L.) and Aegilops tauschii. Furthermore, we observed that overexpression of ZmRL6 can enhance drought tolerance while knock-out of ZmRL6 by CRISPR-Cas9 results in drought hypersensitivity. DAP-seq analyses additionally revealed the ZmRL6 target genes mainly contain ACCGTT, TTACCAAAC and AGCCCGAG motifs in their promoters. By combining RNA-seq and DAP-seq results together, we subsequently identified eight novel target genes of ZmRL6 that are involved in maize's hormone signal transduction, sugar metabolism, lignin synthesis, and redox signaling/oxidative stress. Collectively, our data provided insights into the roles of ZmRL6 in maize's drought response.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app