Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Treatment with tumor-treating fields (TTFields) suppresses intercellular tunneling nanotube formation in vitro and upregulates immuno-oncologic biomarkers in vivo in malignant mesothelioma.

ELife 2023 November 14
Disruption of intercellular communication within tumors is emerging as a novel potential strategy for cancer-directed therapy. Tumor-Treating Fields (TTFields) therapy is a treatment modality that has itself emerged over the past decade in active clinical use for patients with glioblastoma and malignant mesothelioma, based on the principle of using low-intensity alternating electric fields to disrupt microtubules in cancer cells undergoing mitosis. There is a need to identify other cellular and molecular effects of this treatment approach that could explain reported increased overall survival when TTFields are added to standard systemic agents. Tunneling nanotube (TNTs) are cell-contact-dependent filamentous-actin-based cellular protrusions that can connect two or more cells at long-range. They are upregulated in cancer, facilitating cell growth, differentiation, and in the case of invasive cancer phenotypes, a more chemoresistant phenotype. To determine whether TNTs present a potential therapeutic target for TTFields, we applied TTFields to malignant pleural mesothelioma (MPM) cells forming TNTs in vitro. TTFields at 1.0 V/cm significantly suppressed TNT formation in biphasic subtype MPM, but not sarcomatoid MPM, independent of effects on cell number. TTFields did not significantly affect function of TNTs assessed by measuring intercellular transport of mitochondrial cargo via intact TNTs. We further leveraged a spatial transcriptomic approach to characterize TTFields-induced changes to molecular profiles in vivo using an animal model of MPM. We discovered TTFields induced upregulation of immuno-oncologic biomarkers with simultaneous downregulation of pathways associated with cell hyperproliferation, invasion, and other critical regulators of oncogenic growth. Several molecular classes and pathways coincide with markers that we and others have found to be differentially expressed in cancer cell TNTs, including MPM specifically. We visualized short TNTs in the dense stromatous tumor material selected as regions of interest for spatial genomic assessment. Superimposing these regions of interest from spatial genomics over the plane of TNT clusters imaged in intact tissue is a new method that we designate Spatial Profiling of Tunneling nanoTubes (SPOTT). In sum, these results position TNTs as potential therapeutic targets for TTFields-directed cancer treatment strategies. We also identified the ability of TTFields to remodel the tumor microenvironment landscape at the molecular level, thereby presenting a potential novel strategy for converting tumors at the cellular level from 'cold' to 'hot' for potential response to immunotherapeutic drugs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app