Add like
Add dislike
Add to saved papers

Ketone Bodies Rescue Mitochondrial Dysfunction Via Epigenetic Remodeling.

Ischemic cardiac disease is a major cause of mortality worldwide. However, the exact molecular processes underlying this disorder are not fully known. This study includes a comprehensive and coordinated set of in vivo and in vitro experiments using human cardiac specimens from patients with postischemic heart failure (HF) and healthy control subjects, a murine model of HF, and cellular systems. These approaches identified for the first time a specific pattern of maladaptive chromatin remodeling, namely a double methylation of histone 3 at lysine 27 and a single methylation at lysine 36 (H3_K27me2K36me1) consistently induced by ischemic injury in all these settings: human HF; murine HF; and in vitro models. Mechanistically, this work demonstrates that this histone modification mediates the ischemia-induced transcriptional repression of PPARG coactivator 1α (PGC1α), master regulator of mitochondrial function and biogenesis. Intriguingly, both the augmented H3_K27me2K36me1 and the mitochondrial dysfunction ensued by PGC1α down-regulation were significantly attenuated by the treatment with β-hydroxybutyrate, the most abundant ketone body in humans, revealing a novel pathway coupling metabolism to gene expression. Taken together, these findings establish maladaptive chromatin remodeling as a key mechanism in postischemic heart injury, functionally modulated by ketone bodies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app