Add like
Add dislike
Add to saved papers

Melt Processing Virus-Like Particle-Based Vaccine Candidates into Biodegradable Polymer Implants.

Melt processing is an emerging production method to efficiently encapsulate proteins into polymeric devices for sustained release. In the context of vaccines, melt processing is well-suited to develop vaccine delivery devices that are stable outside the cold chain and can generate protective immunity from a single dose. We have demonstrated the compatibility of bacteriophage Qβ virus-like particles (VLPs) with hot-melt extrusion (HME) and have leveraged this technology to develop a single-dose vaccine candidate for vaccination against human papillomavirus (HPV). Here, we detail the methods for chemically conjugating an HPV peptide epitope from the L2 minor capsid protein to Qβ VLPs to generate HPV-Qβ particles. We outline techniques used to characterize HPV-Qβ particles, and we elaborate on the process to encapsulate HPV-Qβ into biodegradable poly(lactic-co-glycolic acid) (PLGA) implants and discuss methods for the materials characterization of the HPV-Qβ/polymer melts. The methods described could be adapted to other disease targets, i.e., by conjugation of a different peptide epitope, or transferred to other VLP systems suited for conjugation, immune response, or stability during processing. Such VLPs are ideally suited for use in HME, a mature, scalable, continuous, and solvent-free process which can be adapted to mold devices, therefore allowing the processing of the melts into various geometries, such as subcutaneous implants, or self-administrable microneedle patches.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app