Add like
Add dislike
Add to saved papers

Resilience to Pain-Related Depression in σ 1 Receptor Knockout Mice Is Associated with the Reversal of Pain-Induced Brain Changes in Affect-Related Genes.

ACS Chemical Neuroscience 2023 September 23
Mice lacking the σ1 receptor chaperone (σ1 R-/- ) are resilient to depressive-like behaviors secondary to neuropathic pain. Examining the resilience's brain mechanisms could help develop conceptually novel therapeutic strategies. We explored the diminished motivation for a natural reinforcer (white chocolate) in the partial sciatic nerve ligation (PSNL) model in wild-type (WT) and σ1 R-/- mice. In the same mice, we performed a comprehensive reverse transcription quantitative PCR (qPCR) analysis across ten brain regions of seven genes implicated in pain regulation and associated affective disorders, such as anxiety and depression. PSNL induced anhedonic-like behavior in WT but not in σ1 R-/- mice. In WT mice, PSNL up-regulated dopamine transporter (DAT) and its rate-limiting enzyme, tyrosine hydroxylase (Th), in the ventral tegmental area (VTA) and periaqueductal gray (PAG) as well as the serotonin transporters (SERT) and its rate-limiting enzyme tryptophan hydroxylase 2 (Tph2) in VTA. In addition, μ-opioid receptor (MOR) and σ1 R were up-regulated in PAG, and MOR was also elevated in the somatosensory cortex (SS) but down-regulated in the striatum (STR). Finally, increased BDNF was found in the medial prefrontal cortex (mPFC) and hypothalamus (HPT). Sham surgery also produced PSNL-like expression changes in VTA, HPT, and STR. Genetic deletion of the σ1 R in mice submitted to PSNL or sham surgery prevented changes in the expression of most of these genes. σ1 R is critically involved in the supraspinal gene expression changes produced by PSNL and sham surgery. The changes in gene expression observed in WT mice may be related to pain-related depression, and the absence of these changes observed in σ1 R-/- mice may be related to resilience.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app