Add like
Add dislike
Add to saved papers

Pathogenic mitochondrial DNA mutations inhibit melanoma metastasis.

bioRxiv 2023 September 6
Mitochondrial DNA (mtDNA) mutations are frequently observed in cancer, but their contribution to tumor progression is controversial. To evaluate the impact of mtDNA variants on tumor growth and metastasis, we created human melanoma cytoplasmic hybrid (cybrid) cell lines transplanted with wildtype mtDNA or pathogenic mtDNA encoding variants that partially or completely inhibit oxidative phosphorylation. Homoplasmic pathogenic mtDNA cybrids reliably established tumors despite dysfunctional oxidative phosphorylation. However, pathogenic mtDNA variants disrupted spontaneous metastasis of subcutaneous tumors and decreased the abundance of circulating melanoma cells in the blood. Pathogenic mtDNA did not induce anoikis or inhibit organ colonization of melanoma cells following intravenous injections. Instead, migration and invasion were reduced, indicating that limited circulation entry functions as a metastatic bottleneck amidst mtDNA dysfunction. Furthermore, analysis of selective pressure exerted on the mitochondrial genomes of heteroplasmic cybrid lines revealed a suppression of pathogenic mtDNA allelic frequency during melanoma growth. Collectively, these findings demonstrate that functional mtDNA is favored during melanoma growth and enables metastatic entry into the blood.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app