Add like
Add dislike
Add to saved papers

To Sleep Dreaming Medals: Sleep Characteristics, Napping Behavior, and Sleep-Hygiene Strategies in Elite Track-and-Field Athletes Facing the Olympic Games of Tokyo 2021.

PURPOSE: Few data are available on sleep characteristics of elite track-and-field athletes. Our study aimed to assess (1) differences in sleep between sexes and among different track-and-field disciplines, (2) the effect of individualized sleep-hygiene strategies on athletes' sleep parameters, and (3) daytime nap characteristics in track-and-field athletes.

METHODS: Sleep characteristics of 16 elite Olympic-level track-and-field athletes (male: n = 8; female: n = 8) were assessed during the preseason period, at baseline (T0), and during the in-season period, after the adoption of individualized sleep-hygiene strategies (T1). Sleep parameters were objectively monitored by actigraphy for a minimum of 10 days, for each athlete, at both T0 and T1. A total of 702 nights were analyzed (T0 = 425; T1 = 277).

RESULTS: Female athletes displayed better sleep efficiency (88.69 [87.69-89.68] vs 91.72 [90.99-92.45]; P = .003, effect size [ES]: 0.44), lower sleep latency (18.99 [15.97-22.00] vs 6.99 [5.65-8.32]; P < .001, ES: 0.65), higher total sleep time (07:03 [06:56-07:11] vs 07:18 [07:10-07:26]; P = .030, ES: 0.26), earlier bedtime (00:24 [00:16-00:32] vs 00:13 [00:04-00:22]; P = .027, ES: 0.18), and lower nap frequency (P < .001) than male athletes. Long-distance runners had earlier bedtime (00:10 [00:03-00:38] vs 00:36 [00:26-00:46]; P < .001, ES: 0.41) and wake-up time (07:41 [07:36-07:46] vs 08:18 [08:07-08:30]; P < .001, ES: 0.61), higher nap frequency, but lower sleep efficiency (88.79 [87.80-89.77] vs 91.67 [90.95-92.38]; P = .013, ES: 0.44), and longer sleep latency (18.89 [15.94-21.84] vs 6.69 [5.33-8.06]; P < .001, ES: 0.67) than athletes of short-term disciplines. Furthermore, sleep-hygiene strategies had a positive impact on athletes' total sleep time (429.2 [423.5-434.8] vs 451.4 [444.2-458.6]; P < .001, ES: 0.37) and sleep latency (14.33 [12.34-16.32] vs 10.67 [8.66-12.68]; P = .017, ES: 0.19).

CONCLUSIONS: Sleep quality and quantity were suboptimal at baseline in Olympic-level track-and-field athletes. Large differences were observed in sleep characteristics between sexes and among different track-and-field disciplines. Given the positive effect of individualized sleep-hygiene strategies on athlete's sleep, coaches should implement sleep education sessions in the daily routine of top-level athletes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app