Add like
Add dislike
Add to saved papers

Ultracompact programmable inverse-designed nanophotonic devices based on digital subwavelength structures.

Applied Optics 2023 May 21
Inverse design is a powerful approach to achieve ultracompact nanophotonic devices. Here, we propose an ultracompact programmable near-infrared nanophotonic device platform to dynamically implement inverse-designed near-infrared devices with different functions by programming the state of the phase-change material filled in each pixel. By tuning PCM block by block, the subwavelength condition for inverse-designed ultracompact devices is satisfied with large tuning pixel size. Based on the inverse-design device platform with a footprint of 6.4µ m ×8µ m , we design and theoretically demonstrate four power splitters with different split ratios and one mode multiplexer working in the near-infrared band. The average excess losses for the power splitters with ratios of 0:1,1:1, 2:1, and 3:1 are less than 0.82, 0.65, 0.82, and 1.03 dB over a wavelength span of 100 nm, respectively. Meanwhile, the insertion losses of the mode multiplexer are 1.4 and 2.5 dB for T E 0 and T E 1 mode, respectively, and the average crosstalk is less than -20 and -19 d B , respectively. The five different devices could be configured online in a nonvolatile way by heating phase change materials with an off-chip laser, which may significantly enhance the flexibility of on-chip optical interconnections.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app