Add like
Add dislike
Add to saved papers

Acyl-protein thioesterase1 alleviates senile osteoporosis by promoting osteoblast differentiation via depalmitoylation of BMPR1a.

Regenerative Therapy 2023 December
OBJECTIVE: Senile osteoporosis (SOP) is an aging-related disease. The depalmitoylating enzyme Acyl-protein thiesterase1 (APT1) is involved in disease regulation. This study explored the mechanism of APT1 in SOP.

METHODS: Eight-week-old SAMP6 mice were selected as SOP models and SAMR1 mice were controls, while osteoblasts were isolated from the femoral surface-soft tissues of SOP and control mice as in vitro models. Mouse femur morphological, bone mineral density (BMD), femur maximum elastic stress and maximum load, and APT1 expression were detected by HE staining, X-ray bone densitometer, material testing machine, and RT-qPCR and Western blot (WB). Osteoprotegrin (OPG)-labeled osteoblasts and APT1 localization in bone tissues were detected by immunohistochemical staining. APT1 expression was promoted in SOP mice by tail vein injection of APT1 lentivirus or promoted/silenced in osteoblasts by transfection of pcDNA3.1-APT1 overexpression or si-APT1 plasmids. SOP mouse osteoblast differentiation (OD), OD-related protein levels, osteoblast proliferation, BMPR1a palmitoylation level, and BMP/Smad pathway were detected by alizarin red staining, ALP activity detection, WB, CCK-8, and IP-ABE method. The effects of the pathway inhibitor LDN-193189 on OD were detected.

RESULTS: APT1 was under-expressed in osteoblasts of bone tissue in SOP mice and mainly localized in osteoblasts. SOP mice manifested increased bone marrow cavity and bone trabecular space, thinned trabecular bone, decreased BMD, maximum elastic stress, maximum load, and reduced OPG-positive osteoblasts in bone tissues, which were averted by APT1 overexpression, thus alleviating SOP. APT1 overexpression increased osteoblast calcium nodules, ALP activity, OD-related protein levels, and cell proliferation. In mechanism, APT1 overexpression inhibited BMPR1a palmitoylation in SOP mouse osteoblasts and activated the BMP/Smad pathway, thus promoting OD.

CONCLUSION: APT1 activated the BMP/Smad pathway and promoted OD by regulating BMPR1a depalmitoylation, thus alleviating mouse SOP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app