Add like
Add dislike
Add to saved papers

Rich-grain-boundary Ni-Co-Se nanowire arrays for fast charge storage in alkaline electrolyte.

Nanotechnology 2023 September 7
In this work, the one-dimensional (1D) Ni-Co-Se nanowire arrays with rich grain-boundaries were prepared through the solvothermal method and gas-phase selenizaiton. The results showed that the structure and crystallization of the Ni-Co-Se nanowire arrays could be modulated through the optimization of selenizaiton time. The optimal Ni-Co-Se electrode sample displayed an area specific capacitance of 242.6 μAh cm-2 at 30 mA cm-2 with a current retention rate of 68.34%. The assembled Ni-Co-Se/Active carbon (AC) electrode-based asymmetric supercapacitor (ASC) showed the area specific capacitances of 329.2 μAh cm-2 and 225.8 μAh cm-2 at 3 mA cm-2 and 30 mA cm-2, respectively. A 73.33% retention rate of capacitance was observed after 8000 charge/discharge cycles. Besides, the further fabricated all-solid ASC delivered the power densities of 342.94 W kg-1 and 3441.33 W kg-1 at the energy densities of 37.62 Wh kg-1 and 25.81 Wh kg-1, respectively. Those results suggested the potentials of the obtained Ni-Co-Se nanowire arrays as electrode material for the high-performance pseudocapacitors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app